Non-Local Morphological PDEs and p-Laplacian Equation on Graphs With Applications in Image Processing and Machine Learning
نویسندگان
چکیده
In this paper, we introduce a new class of nonlocal p-Laplacian operators that interpolate between non-local Laplacian and infinity Laplacian. These operators are discrete analogous of the game p-laplacian operators on Euclidean spaces, and involve discrete morphological gradient on graphs. We study the Dirichlet problem associated with the new p-Laplacian equation and prove existence and uniqueness of it’s solution. We also consider non-local diffusion on graphs involving these operators. Finally, we propose to use these operators as a unified framework for solution of many inverse problems in image processing and machine learning.
منابع مشابه
Introduction to the Issue on Filtering and Segmentation With Mathematical Morphology
This issue presents novel contributions and introduces the state-of-art in filtering and segmentation methods using mathematical morphology. Historically, mathematical morphology developed a theoretical framework for non-linear image analysis, which from its inception led to important theoretical and practical results. Due to its algebraic foundation and geometrical intuition, the theory of mat...
متن کاملNonlocal infinity Laplacian equation on graphs with applications in image processing and machine learning
In this paper, an adaptation of the infinity Laplacian equation to weighted graphs is proposed. This adaptation leads to a nonlocal artial difference equation on graphs, which is an extension of the well-known approximations of the infinity Laplacian equation. o do so, we study the limit as p tends to infinity of minimizers of p-harmonic function on graphs. We also prove the existence and nique...
متن کاملMathematical Morphology and Eikonal Equations on Graphs for Nonlocal Image and Data Processing
Mathematical morphology (MM) offers a wide range of operators to address various image processing problems. These operators can be defined in terms of algebraic (discrete) sets or as partial differential equations (PDEs). In this paper, we introduce a novel formulation of MM formalized as a framework of partial difference equations (PdEs) over weighted graphs of arbitrary topology. Then, we pre...
متن کاملImage Zooming using Non-linear Partial Differential Equation
The main issue in any image zooming techniques is to preserve the structure of the zoomed image. The zoomed image may suffer from the discontinuities in the soft regions and edges; it may contain artifacts, such as image blurring and blocky, and staircase effects. This paper presents a novel image zooming technique using Partial Differential Equations (PDEs). It combines a non-linear Fourth-ord...
متن کاملAdaptation of Eikonal Equation over Weighted Graph
In this paper, an adaptation of the eikonal equation is proposed by considering the latter on weighted graphs of arbitrary structure. This novel approach is based on a family of discrete morphological local and nonlocal gradients expressed by partial difference equations (PdEs). Our formulation of the eikonal equation on weighted graphs generalizes local and nonlocal configurations in the conte...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Sel. Topics Signal Processing
دوره 6 شماره
صفحات -
تاریخ انتشار 2012